Synthetic Long Peptide Influenza Vaccine Containing Conserved T and B Cell Epitopes Reduces Viral Load in Lungs of Mice and Ferrets

نویسندگان

  • S. K. Rosendahl Huber
  • M. G. M. Camps
  • R. H. J. Jacobi
  • J. Mouthaan
  • H. van Dijken
  • J. van Beek
  • F. Ossendorp
  • J. de Jonge
  • Sang-Moo Kang
چکیده

Currently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed. We set out to develop a vaccine that provides protection against a broad range of influenza viruses. Therefore, highly conserved parts of the influenza A virus (IAV) were selected of which we constructed antibody and T cell inducing peptide-based vaccines. The B epitope vaccine consists of the highly conserved HA2 fusion peptide and M2e peptide coupled to a CD4 helper epitope. The T epitope vaccine comprises 25 overlapping synthetic long peptides of 26-34 amino acids, thereby avoiding restriction for a certain MHC haplotype. These peptides are derived from nucleoprotein (NP), polymerase basic protein 1 (PB1) and matrix protein 1 (M1). C57BL/6 mice, BALB/c mice, and ferrets were vaccinated with the B epitopes, 25 SLP or a combination of both. Vaccine-specific antibodies were detected in sera of mice and ferrets and vaccine-specific cellular responses were measured in mice. Following challenge, both mice and ferrets showed a reduction of virus titers in the lungs in response to vaccination. Summarizing, a peptide-based vaccine directed against conserved parts of influenza virus containing B and T cell epitopes shows promising results for further development. Such a vaccine may reduce disease burden and virus transmission during pandemic outbreaks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recombinant Vaccinia Virus-based T Cell Vaccine against Influenza Virus Reduces Lung Viral Load upon Virus Challenge

Currently, there are only two approved vaccines against influenza virus, one containing killed virus and the other containing live, attenuated virus. Each year, there is a reformation of the vaccine formulation, depending on which strains are thought to become most dangerous in the upcoming season. Numerous groups and pharmaceutical companies are developing universal vaccines that would not req...

متن کامل

Prediction of T-cell epitopes for designing a reverse vaccine against streptococcal bacteria

Streptococcal bacteria are among dangerous human pathogens with major prevalence worldwide. A good vaccine against streptococcal bacteria should have epitopes that confer protection from infection by different streptococcal bacteria types. we aimed was to recognize the most immunogenic and conserved epitopes of streptococcal bacteria, which could be a potential candidate for vaccine development...

متن کامل

A Human Multi-Epitope Recombinant Vaccinia Virus as a Universal T Cell Vaccine Candidate against Influenza Virus

There is a need to develop a universal vaccine against influenza virus infection to avoid developing new formulations of a seasonal vaccine each year. Many of the vaccine strategies for a universal vaccine target strain-conserved influenza virus proteins, such as the matrix, polymerase, and nucleoproteins, rather than the surface hemagglutinin and neuraminidase proteins. In addition, non-diseas...

متن کامل

Synthetic recombinant influenza vaccine induces efficient long-term immunity and cross-strain protection.

Synthetic vaccines utilize specific antigenic epitopes in order to elicit a protective immune response. In this work we examined the immunogenicity of chimeric proteins expressing influenza epitopes and their ability, as single products or in various combinations, to protect mice from viral challenge. Oligonucleotides coding for three epitopes (HA91-108, NP55-69 and NP147-158) stimulating B cel...

متن کامل

A Novel Multi-Epitope Vaccine For Cross Protection Against Hepatitis C Virus (HCV): An Immunoinformatics Approach

Background: Hepatitis C virus (HCV) causes acute and chronic human hepatitis infections. Due to the high genetic diversity and high rates of mutations in the genetic material so far there is no approved vaccine against HCV. Materials and Methods: The aim of this study was to determination B and T cell conserved epitopes of E1 and E2 proteins from HCV and construction of a chimeric pepti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015